Document Representation Methods for Clustering Bilingual Documents
نویسندگان
چکیده
Globalization places people in a multilingual environment. There is a growing number of users to access and share information in several languages for public or private purpose. In order to deliver relevant information in different languages, efficient multilingual documents management is worthy of study. Generally, classification and clustering are two typical methods for documents management. However, lack of training data and high efforts for corpus annotation will increase the cost for classifying multilingual documents which needs to bridge language gaps as well. Clustering is more suitable to implement in such practical applications. There are two main factors involved in documents clustering, document representation method and clustering algorithm. In this paper, we focus on document representation method and demonstrate that the choice of representation methods has impacts on quality of clustering results. In our experiment, we use parallel corpora (English-Chinese documents on topic of technology information) and comparable corpora (English and Chinese documents on topics of mobile technology and wind energy) as dataset. We compare four different types of document representation methods: Vector Space Model, Latent Semantic Indexing, Latent Dirichlet Allocation and Doc2Vec. Experimental results show that, accuracy of Vector Space Model were not competitive with other methods in all clustering tasks. Latent Semantic Indexing is overly sensitive to corpora itself, for it behaved differently when clustering two different topics of 1 Available at: http://childrenslibrary.org 2 Available at: http://wdl.org 3 Available at: http://www.newsexplorer.eu/NewsExplorer/h ome/en/latest.html comparable corpora. Latent Dirichlet Allocation behaves best when clustering documents in small size of comparable corpora while Doc2Vec behaves best for large documents set of parallel corpora. Accordingly, characteristics of corpora should be under considerations for rational utilization of document representation methods to have better performance.
منابع مشابه
خوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملChinese-Tibetan bilingual clustering based on random walk
In recent years, multi-source clustering has received a significant amount of attention. Several multi-source clustering methods have been developed from different perspectives. In this paper, aiming at addressing the problem of Chinese–Tibetan bilingual document clustering, a novel bilingual clustering scheme is proposed, which can well capture both the intralingua document structures and inte...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملBilingual Document Clustering using Translation-Independent Features
This paper focuses on the task of bilingual clustering, which involves dividing a set of documents from two different languages into a set of thematically homogeneous groups. It mainly proposes a translation independent approach specially suited to deal with linguistically related languages. In particular, it proposes representing the documents by pairs of words orthographically or thematically...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کامل